2011 - CTS-IXA

This page contains exclusive content for the member of the following sections: TTS, CTS, IXA. Log in to view.

Parallel Session 2- Stem Cells (Cell Track)

4.115 - In utero intracardial injection of a transducible MafA protein accelerates pancreatic islet maturation

Presenter: Ricardo, Pastori, Miami, United States
Authors: Nancy Vargas1, Silvia Alvarez-Cubela1, Margarita Nieto1, Nicholas Fort1, Jaime Giraldo1, Sirlene Cechin1, Enrique Garcia1, Camillo Ricordi1, Luca Inverardi1, Ricardo Pastori1, Juan Dominguez-Bendala1


In utero intracardial injection of a transducible MafA protein accelerates pancreatic islet maturation

Nancy Vargas, Silvia Alvarez-Cubela, Margarita Nieto, Nicholas Fort, Jaime Giraldo, Sirlene Cechin, Enrique Garcia, Camillo Ricordi, Luca Inverardi, Ricardo Pastori, Juan Dominguez-Bendala

Stem Cell Laboratory, Diabetes Research Institute, University of Miami, Miami, FL, United States

In concert with Pdx1 and Beta2/NeuroD, the nuclear protein MafA is essential for the maintenance of the adult beta cell phenotype by contributing to the proper regulation of the insulin promoter. When ectopically expressed together, MafA, Pdx1 and Ngn3 (an upstream regulator of Beta2/NeuroD) were recently shown to reprogram acinar exocrine cells into functional, insulin-producing beta cells. This novel approach has opened the door to potential clinical interventions aimed at restoring beta cell mass in the context of pancreatic disease. For this to happen, however, alternatives to the viral delivery of these factors need to be defined. Protein transduction is one such possible alternative. Using this technology, any protein of interest can be made cell-permeable by the mere addition of a short membrane-penetrating peptide. Recombinant purified proteins can then be added in vitro to the culture medium or delivered locally or systemically in vivo, where they are expected to exert their function in the same manner as their native counterparts. This DNA-free system is deemed to be safer than viral-based approaches for future medical use. We have already described transducible versions of Ngn3 and Pdx1, and here we present a recombinant transducible version of the MafA protein (TAT-MafA) that penetrates across cell membranes with an extremely high efficiency and binds to the insulin promoter in vitro. When injected in utero into the heart of live murine embryos, TAT-MafA reaches the developing pancreas and increases the expression of key target genes, enhances insulin production and causes cytoarchitectural changes that are consistent with faster islet maturation. The purification and characterization of a functional TAT-MafA protein sets the stage for prospective therapeutic applications that circumvent the use of viruses. To our knowledge, this is also the first report on the use of protein transduction in utero.

Important Disclaimer

By viewing the material on this site you understand and accept that:

  1. The opinions and statements expressed on this site reflect the views of the author or authors and do not necessarily reflect those of The Transplantation Society and/or its Sections.
  2. The hosting of material on The Transplantation Society site does not signify endorsement of this material by The Transplantation Society and/or its Sections.
  3. The material is solely for educational purposes for qualified health care professionals.
  4. The Transplantation Society and/or its Sections are not liable for any decision made or action taken based on the information contained in the material on this site.
  5. The information cannot be used as a substitute for professional care.
  6. The information does not represent a standard of care.
  7. No physician-patient relationship is being established.



Staff Directory


The Transplantation Society
International Headquarters
740 Notre-Dame Ouest
Suite 1245
Montréal, QC, H3C 3X6